Deep Bayesian Quadrature Policy Optimization Google Research

Akella Ravi Tej¹, Kamyar Azizzadenesheli¹, Mohammad Ghavamzadeh², Anima Anandkumar³, Yisong Yue³ Caltech

¹Purdue University, ²Google Research, ³Caltech

Policy Gradient Estimation

Policy gradient (PG) is an integral equation that cannot be computed exactly for an unknown environment.

 $\int_{\mathcal{Z}} \rho^{\pi_{\theta}}(z) \nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(z) dz$

+

In practice, two prominent approaches for approximating the PG integral from a finite number of samples are:

- (i) Monte-Carlo (MC) method (Predominant approach)
- + Computationally Efficient - Sample Inefficient

(ii) Bayesian Quadrature (BQ)

Sample Efficient Computationally Inefficient

Our Contributions

- Deep Bayesian Quadrature Policy Gradient (DBQPG) ≻
 - Fast & Scalable BQ method.
- Estimates PG more accurately from fewer samples.
- Estimates the uncertainty in stochastic gradient estimates.
- Uncertainty Aware Policy Gradient (UAPG) ≻
 - *Reliable* PG updates: adjusts step-size \downarrow using uncertainty \uparrow

DBQPG and UAPG are statistically-efficient alternatives to the widely TL:DR: used Monte-Carlo method while having a similar computational cost.

PC 2

LaUAPG

DBQPG Gradient Estimat

(I BQ

PC 1

UAPG Gradient Estimate (LAUAPG)

UAPG Uncertainty

