
Akella Ravi Tej

joint work with
Kamyar Azizzadenesheli, Mohammad Ghavamzadeh, Anima Anandkumar,

Yisong Yue

Deep Bayesian Quadrature
Policy Optimization

Overview
➔ Preliminaries

➔ Policy Gradient as Numerical Integration Problem
➢ Monte-Carlo (MC) Estimation
➢ Bayesian Quadrature (BQ)

➔ Deep Bayesian Quadrature Policy Gradient (DBQPG)
➢ Scalable, sample-efficient policy gradient estimator.

➔ Uncertainty Aware Policy Gradient (UAPG)
➢ Using the estimation uncertainty provided by DBQPG for reliable policy updates.

➔ Empirical Analysis

Preliminaries

The agent–environment interaction in a Markov decision process.

[Figure source: Sutton & Barto, 1998]

πθ (at | st)

st+1

rt+1
rtst at

State-space st ∈ S

Action-space at ∈ A

Transition Kernel P : S x A → ΔS

Reward Kernel r : S x A → ℝ

Initial state distribution ⍴0 : S → ΔS

Stochastic Policy πθ : S → ΔA

ΔS and ΔA are distributions over S and A, respectively.

Useful Definitions

State-action pair:

State-action transition dynamics:

Action-value function:

State-value function:

Advantage function:

Expected reward:

Policy Gradient Theorem

where,

[Sutton et al., 2000]

Monte-Carlo PG Estimation

Monte-Carlo PG Estimation

where n is the sample size.

Estimating the Q-function

● Monte-Carlo/TD(1) action-value estimates:

● Function approximation for V(s): TD(1)+Advantage (e.g. GAE1)
● Function approximation for Q(s,a): TD(0), TD(λ)

Single
trajectory

Expectation over
multiple trajectory

1[Schulman et al., 2015]

Monte-Carlo Estimation
Exact gradient MC approximation

[Ilyas et al., 2018]

+ Returns unbiased policy gradient estimates
+ Computationally efficient, i.e., scalable

- Statistically inefficient (high sample complexity)
- Low accuracy
- High variance

Matrix Representation of MC-PG

Score function:

For samples ,

Monte-Carlo (MC) estimate of policy gradient:

Bayesian Quadrature

Bayesian Quadrature

Overview: Replace with a function approximation that:
1. closely fits near sampled locations .
2. Offers an analytical solution to the policy gradient integral.

Bayesian Quadrature

Step 1: Choose a prior stochastic process over .
○ common choice is a Gaussian process (GP):

Bayesian Quadrature

Step 2: Conditioning the GP prior on the samples
 the posterior moments of are as follows:

Bayesian Quadrature

Step 3: Use the posterior over integrand to compute policy
 gradient mean and covariance.

Bayesian Quadrature

Step 3: Use the posterior over integrand to compute policy
 gradient mean and covariance.

Appropriate kernel choice
provides closed form solution!

[Ghavamzadeh and Engel, 2007]

Useful Identities
● Expectation of a score vector under the policy distribution is 0:

● Fisher Information Matrix (G):

Kernel Choice

The kernel choice that solves PG integral in closed form:

 with ,

where G is the Fisher Information Matrix.

Matrix representation:

State Kernel Fisher Kernel

Why this kernel choice?
The kernel choice that solves PG integral in closed form:

 with ,
State Kernel Fisher Kernel

0

BQ-PG Posterior Moments

For samples and score function ,

Policy Gradient
Mean

Policy Gradient
Covariance

More intuition behind this kernel choice

Action
Value

Posterior

State
Value

Posterior

Advantage
Value

Posterior

MC-PG vs BQ-PG

Monte-Carlo estimation of policy gradient:

Bayesian Quadrature estimation of policy gradient:

Limiting Cases of BQ-PG

When c1 = 0:

When c2 = 0:

Highlights:
1. BQ-PG’s posterior mean reduces to MC-PG.
2. BQ-PG’s posterior covariance is a scalar

multiple of the prior covariance/F.I.M (G).

Highlights:
1. Posterior moments of the policy gradient

vanish upon removing the Fisher kernel.

Computational Analysis

Computational Complexity of BQ-PG

Inverse Matrix Vector Multiplication (iMVM)
(Cubic time complexity => Bottleneck)

Vector-Jacobian Product (vJP)
(1 Autodiff backward operation => Efficient)

Efficient iMVM Implementation

Naive Matrix Inversion

● Cubic time complexity
● Quadratic space complexity

 Does not scale to high-dimensional settings

Conjugate Gradient for iMVM

Given a Matrix-Vector-Multiplication (MVM)
function with time complexity O(𝓜):

● Time complexity: O(p*𝓜)
● p: Number of CG iterations (p << n)

Naive MVM

● Quadratic time and space complexity
 Does not scale to high-dimensional settings

Efficient MVM

● Linear time and space complexity
 Scales to high-dimensional settings

Efficient MVM Implementation

Since state kernel is arbitrary, efficient MVM
requires a general interpolation strategy:

● Structured Kernel Interpolation (SKI)
○ Scales linearly.
○ Additional scalability for special

kernel families.

Special structure of Kf enables for efficient MVM
through autodiff backward calls:

I. Vector-Jacobian Product (vJp)
II. inverse-Hessian-Vector Product

III. Jacobian-Vector Product (Jvp)
● FastSVD for additional speedup.

Structured Kernel Interpolation (SKI)

Inducing point approximation:

Using a sparse interpolation matrix W:
● Bicubic interpolation, i.e., 4 non-zero elements per

row.

n x m m x mn x n m x n

Interpolation Matrix

Structured Kernel Interpolation (SKI)

● Kronecker method:
○ Product kernel
○ Inducing points on a multidimensional grid

● Toeplitz method:
○ stationary kernel
○ Inducing points on a 1D grid.

Complexity SKI SKI + Kronecker SKI + Topelitz

Time O(n+m2) O(n+Ym1+1/Y) O(n+m*log(m))

Space O(n+m2) O(n+Ym2/Y) O(n+m)

Fisher Kernel MVM using only AutoDiff

where

Complexity in terms of reverse-mode automatic differentiation (AD):
1. vJp: 1 backward pass
2. Hvp: 2 backward passes
3. iHvp: 2*p backward passes (p: Number of CG iterations)
4. Jvp: 2 backward passes (or 1 forward pass in forward-mode AD)

vJpiHvpJvp Too many
backward calls !!

Fisher Kernel MVM using SVD (Faster!)

Let (SVD),

then and,

● Randomized SVD: Fast, scalable and supports implicit MVM !!
○ Linear time MVM O(n*δ), where δ is the rank of truncated SVD.

Equivalent to a
linear kernel in R!!

Deep BQ-PG (DBQPG)
Scaling BQ-PG to high-dimensional settings

Scaling to High-Dimensional Settings:
DBQPG

Linear scaling algorithm:

Inverse MVM:
● Conjugate gradient (CG)

Fisher kernel MVM (CG inner-loop):
● Randomized SVD → Linear kernel (fast)

State kernel MVM (CG inner-loop):
● Deep RBF kernel+kernel learning (GPU)
● Kernel Interpolation + Toeplitz method

Vector-Jacobian Product (vJp):
● 1 backward pass

DBQPG Algorithm

Kernel Variations in DBQPG

Kernel composition :
● Fisher kernel (fixed; essential for solving policy gradient integral)
● State kernel (arbitrary; derivation holds for any valid kernel)

■ Base kernels:
○ RBF, Matern, Polynomial kernel, etc.

■ Enhancing expressivity of base kernels:
○ Deep kernels

● NN feature extractor + base kernel
○ Kernel learning

● Optimize kernel hyperparameters for GP’s MLL

DBQPG State Kernel Selection
(Base kernel comparison)

ks = 0 (i.e., BQ-PG → MC-PG)
○ Bad prior.
○ State-value function suppressed to 0.

ks ≠ 0 (i.e., BQ-PG ↛ MC-PG)
○ Doesn’t have to be better than MC-PG.
○ Yet, most base kernels outperform MC!

○ Even Linear kernel (non-stationary)

ks = 0 (equivalently MC) results in
degeneracy of BQ’s performance.

DBQPG Ablation Study
(Role of SKI & DKL)

— DBQPG (w/o DKL):-
○ Plain RBF kernel (w/o NN bases).

— DBQPG (w/o DKL & SKI):-
○ Plain RBF kernel (w/o NN bases).
○ Replaced SKI with traditional inducing

points method.

Deep Kernels and SKI are both important
for superior performance of DBQPG.

DBQPG vs MC

Gradient
Accuracy

(Cosine Similarity)

Gradient
Variance
(Normalized)

DBQPG > MC

MC > DBQPG

Summary of DBQPG

A policy gradient estimator that provides:
1. More accurate gradient estimates
2. Lesser variance in gradient estimates
3. Uncertainty in policy gradient estimation

Can estimation uncertainty be used
to further improve policy updates? UAPG

Uncertainty Aware Policy Gradient
(UAPG)

Uncertainty Aware Policy Gradient

DBQPG update:
● Uses the same learning rate for

all gradient components, thus
neglecting their respective
uncertainties.

● Greater uncertainty increases the
risk of large policy updates.

UAPG step-size adjustment:
● Offers a policy update with

uniform uncertainty in all the
component directions.

● Covariance is identity matrix.

Uncertainty Aware Policy Gradient

Covariance of UAPG
is the identity matrix.

Practical UAPG Algorithm

Randomized (truncated) SVD:

UAPG estimate:

Empirical Analysis

Wall-Clock Time Comparison

DBQPG and UAPG are
linear-scaling methods with

negligible overhead over MC.

Vanilla Policy Gradient

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Summary

➢ Deep Bayesian Quadrature Policy Gradient (DBQPG)
→ Estimating policy gradients more accurately with fewer samples.
→ Estimating the uncertainty in stochastic gradient estimates.

➢ Uncertainty Aware Policy Gradient (UAPG)
→ Reliable policy updates, i.e., adjust step-size ↓ using the uncertainty ↑.

TL; DR: DBQPG and UAPG are statistically efficient alternatives to Monte-Carlo
methods that conveniently scale (linearly) to high-dimensional settings.

Other resources
● Preprint:

https://arxiv.org/pdf/2006.15637.pdf
● Project website:

https://akella17.github.io/publications/Deep-Bayesian-Quadrature-Policy-Optimization/
● Blog:

https://akella17.github.io/blogs/Bayesian-Quadrature-for-Policy-Gradient/
● Source code:

https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization
● Bibtex:

@article{ravi2020DBQPG,

title={Deep Bayesian Quadrature Policy Optimization},

author={Akella Ravi Tej and Kamyar Azizzadenesheli and Mohammad Ghavamzadeh

and Anima Anandkumar and Yisong Yue},

journal={arXiv preprint arXiv:2006.15637},

year={2020}

}

https://arxiv.org/pdf/2006.15637.pdf
https://akella17.github.io/publications/Deep-Bayesian-Quadrature-Policy-Optimization/
https://akella17.github.io/blogs/Bayesian-Quadrature-for-Policy-Gradient/
https://github.com/Akella17/Deep-Bayesian-Quadrature-Policy-Optimization

